1. L. Wang, S. Ma*, Q. Han and F. Chu, Unified Sparse Time Frequency Analysis: Decomposition, Transformation and Reassignment [J]IEEE Transactions on Industrial Informatics (SCI影响因子IF=10.2). 2. L. Wang, S. Ma* and Q. Han, Enhanced Sparse Low-Rank Representation via Nonconvex Regularization for Rotating Machinery Early Fault Feature Extraction [J] IEEE/ASME Transactions on Mechatronics (SCI影响因子IF=5.3). 3. L. Wang, S. Ma* and Q. Han, Reweighted Dual Sparse Regularization and Convex Optimization for Bearing Fault Diagnosis[J] IEEE Transactions on Instrumentation and Measurement (SCI影响因子IF=4.0), vol. 70, pp. 1-9, 2021. 4. Ma S, Chu F, Han Q. Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions[J]. Mechanical Systems and Signal Processing (SCI影响因子IF=5.0), 2019, 127: 190-201. 5. Ma S, Chu F. Ensemble deep learning-based fault diagnosis of rotor bearing systems[J]. Computers in Industry (SCI影响因子IF=4.7), 2019, 105: 143-152. 6. Ma S, Li S M, Xiong Y P. Uncertainty reduced novelty detection approach applied to rotating machinery for condition monitoring[J]. Shock and Vibration (SCI影响因子IF=1.8), 2015, 2015. 7. Ma S, Li S M, Xiong Y P. Uncertainty extraction based multi-fault diagnosis of rotating machinery[J]. Journal of Vibroengineering (SCI Indexed), 2016, 18(1). 8. Ma S , Li S M , Liu H L, et al. Vibration source model estimation and state specificity perception of a rotor structure[J] (SCI Indexed). 2015. 9. Han Q,Ma S, Chu F. Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China[J]. Renewable & Sustainable Energy Reviews (SCI影响因子IF=10.5), 2019. 10. 马赛,褚福磊. 风速时间序列模拟的模型有效性验证及代表性风场实例分析[J]. 振动与冲击(EI Indexed), 2019 |